¿Por qué Business Intelligence?

¿Por qué Business Intelligence?

La capacidad para tomar decisiones de negocio precisas y de forma rápida se ha convertido en una de las claves para que una empresa llegue al éxito. Sin embargo, los sistemas de información tradicionales (como la mayoría de los programas de gestión, las aplicaciones a medida, e incluso los ERP más sofisticados), suelen presentar una estructura muy inflexible para este fin. Aunque su diseño se adapta con mayor o menor medida para manejar los datos de la empresa, no permite obtener la información de los mismos, y mucho menos extrapolar el conocimiento almacenado en el día a día de las bases de datos. Las principales características que limitan estos sistemas son:

Presentaciones Eficaces

Gran rigidez a la hora de extraer datos, de manera que el usuario tiene que ceñirse a los informes predefinidos que se configuraron en el momento de la implantación, y que no siempre responden a sus dudas reales.

Necesidad de conocimientos técnicos. Para la generación de nuevos informes o métricas suele resultar ineludible acudir al departamento técnico, solicitando una consulta adecuada para interrogar la base de datos.

Largos tiempos de respuesta, ya que las consultas complejas de datos suelen implicar la unión de tablas operacionales de gran tamaño, lo que se traduce en una incómoda espera que dificulta la fluidez del trabajo.

Deterioro en el rendimiento del SI. Cuando la base de datos consultada, para generar informes o ratios de negocio, es la misma que la que soporta el operativo de la empresa, el funcionamiento del sistema puede degradarse hasta afectar y paralizar a todos los usuarios conectados.

Falta de integración que implica islas de datos. Muchas organizaciones disponen de múltiples sistemas de información, incorporados en momentos distintos, para resolver problemáticas diferentes. Sus bases de datos no suelen estar integradas, lo que implica la existencia de islas de información.

Datos erróneos, obsoletos o incompletos. El tema de la calidad de los datos siempre es considerado como algo importante, pero esta labor nunca se lleva al extremo de garantizar la fiabilidad de la información aportada.

Problemas para adecuar la información al cargo del usuario. No se trata de que todo el mundo tenga acceso a toda la información, sino de que tenga acceso a la información que necesita para que su trabajo sea lo más eficiente posible.

Ausencia de información histórica. Los datos almacenados en los sistemas operacionales están diseñados para llevar la empresa al día, pero no permiten contrastar la situación actual con una situación retrospectiva de años atrás.

Para superar todas estas limitaciones, el Business Intelligence se apoya en un conjunto de herramientas que facilitan la extracción, la depuración, el análisis y el almacenamiento de los datos generados en una organización, con la velocidad adecuada para generar conocimiento y apoyar la toma de decisiones de los directivos y los usuarios oportunos.

No es que los productos de BI sean mejores que las aplicaciones actuales: se trata de sistemas con objetivos distintos, eficientes en sus respectivas ramas, pero que deben complementarse para optimizar el valor de los sistemas de información.

Datos, información, conocimiento

¿En qué se diferencia el conocimiento de los datos y de la información? En una conversación informal, los tres términos suelen utilizarse indistintamente y esto puede llevar a una interpretación libre del concepto de conocimiento. Quizás la forma más sencilla de diferenciar los términos sea pensar que los datos están localizados en el mundo y el conocimiento está localizado en agentes de cualquier tipo (personas, empresas, máquinas…), mientras que la información adopta un papel mediador entre ambos.

Los conceptos que se muestran a continuación se basan en las definiciones de Davenport y Prusak (1999).

¿Por qué Business Intelligence?
Datos

Los datos son la mínima unidad semántica, y se corresponden con elementos primarios de información que por sí solos son irrelevantes como apoyo a la toma de decisiones. También se pueden ver como un conjunto discreto de valores, que no dicen nada sobre el por qué de las cosas y no son orientativos para la acción.

Un número telefónico o un nombre de una persona, por ejemplo, son datos que, sin un propósito, una utilidad o un contexto no sirven como base para apoyar la toma de una decisión. Los datos pueden ser una colección de hechos almacenados en algún lugar físico como un papel, un dispositivo electrónico (CD, DVD, disco duro…), o la mente de una persona. En este sentido las tecnologías de la información han aportado mucho a recopilación de datos.

Como cabe suponer, los datos pueden provenir de fuentes externas o internas a la organización, pudiendo ser de carácter objetivo o subjetivo, o de tipo cualitativo o cuantitativo, etc.

Información

La información se puede definir como un conjunto de datos procesados y que tienen un significado (relevancia, propósito y contexto), y que por lo tanto son de utilidad para quién debe tomar decisiones, al disminuir su incertidumbre. Los datos se pueden transforman en información añadiéndoles valor:

  • Contextualizando: se sabe en qué contexto y para qué propósito se generaron.
  • Categorizando: se conocen las unidades de medida que ayudan a interpretarlos.
  • Calculando: los datos pueden haber sido procesados matemática o estadísticamente.
  • Corrigiendo: se han eliminado errores e inconsistencias de los datos.
  • Condensando: los datos se han podido resumir de forma más concisa (agregación).

Por tanto, la información es la comunicación de conocimientos o inteligencia, y es capaz de cambiar la forma en que el receptor percibe algo, impactando sobre sus juicios de valor y sus comportamientos.

Información = Datos + Contexto (añadir valor) + Utilidad (disminuir la incertidumbre)

Conocimiento

El conocimiento es una mezcla de experiencia, valores, información y know-how que sirve como marco para la incorporación de nuevas experiencias e información, y es útil para la acción. Se origina y aplica en la mente de los conocedores. En las organizaciones con frecuencia no sólo se encuentra dentro de documentos o almacenes de datos, sino que también esta en rutinas organizativas, procesos, prácticas, y normas.

El conocimiento se deriva de la información, así como la información se deriva de los datos. Para que la información se convierta en conocimiento es necesario realizar acciones como:

  • Comparación con otros elementos.
  • Predicción de consecuencias.
  • Búsqueda de conexiones.
  • Conversación con otros portadores de conocimiento.
Arquitectura de una solución de Business Intelligence

Una solución de Business Intelligence parte de los sistemas de origen de una organización (bases de datos, ERPs, ficheros de texto…), sobre los que suele ser necesario aplicar una transformación estructural para optimizar su proceso analítico.

Para ello se realiza una fase de extracción, transformación y carga (ETL) de datos. Esta etapa suele apoyarse en un almacén intermedio, llamado ODS, que actúa como pasarela entre los sistemas fuente y los sistemas destino (generalmente un datawarehouse), y cuyo principal objetivo consiste en evitar la saturación de los servidores funcionales de la organización.

La información resultante, ya unificada, depurada y consolidada, se almacena en un datawarehouse corporativo, que puede servir como base para la construcción de distintos datamarts departamentales. Estos datamarts se caracterizan por poseer la estructura óptima para el análisis de los datos de esa área de la empresa, ya sea mediante bases de datos transaccionales (OLTP) o mediante bases de datos analíticas (OLAP).

¿Por qué Business Intelligence?
Los datos albergados en el datawarehouse o en cada datamart se explotan utilizando herramientas comerciales de análisis, reporting, alertas… etc. En estas herramientas se basa también la construcción de productos BI más completos, como los sistemas de soporte a la decisión (DSS), los sistemas de información ejecutiva (EIS) y los cuadros de mando (CMI) o Balanced Scorecard (BSC).

La Inteligencia de Negocio en los diferentes departamentos de la empresa

En todas las empresas cada departamento acumula diferentes datos: sobre sus clientes, sus inventarios, su producción, sobre la efectividad de las campañas de márketing, información sobre proveedores y socios, además de los datos que pueden proveer del exterior, como los referentes a competidores. En este sentido, el Business Intelligence puede realizar distintas aportaciones a cada departamento, siempre con el objetivo de integrar y optimizar la información disponible en la organización:

Departamento de marketing

El BI permite identificar de forma más precisa los segmentos de clientes y estudiar con mayor detalle su comportamiento. Para ello se pueden incluir análisis capaces de medir, por ejemplo, el impacto de los precios y las promociones en cada segmento.

Departamento de compras

El BI permite acceder a los datos del mercado, vinculándolos con la información básica necesaria para hallar las relaciones entre coste y beneficio. Al mismo tiempo, permite monitorizar la información de cada factoría o cadena de producción, lo que puede ayudar a optimizar el volumen de las compras.

Departamento de producción

El BI proporciona un mecanismo que permite analizar el rendimiento de cualquier tipo de proceso operativo, ya que comprende desde el control de calidad y la administración de inventarios hasta la planificación y la historización de la producción.

Departamento de ventas

El BI facilita la comprensión de las necesidades del cliente, así como responder a las nuevas oportunidades del mercado. También son posibles análisis de patrones de compra para aprovechar coyunturas de ventas con productos asociados.

Departamento económico-financiero

El BI permite acceder a los datos de forma inmediata y en tiempo real, mejorando así ciertas operaciones, que suelen incluir presupuestos, proyecciones, control de gestión, tesorería, balances y cuentas de resultados.

Departamento de atención al cliente

Aplicado a este ámbito, el BI permite evaluar con exactitud el valor de los segmentos del mercado y de los clientes individuales, además de ayudar a retener a los clientes más rentables.

Departamento de recursos humanos

Obteniendo los datos precisos de la fuente adecuada, el BI permite analizar los parámetros que más pueden afectar al departamento: satisfacción de los empleados, absentismo laboral, beneficio-hora/hombre… etc.

¿Por qué Business Intelligence?
Finalmente, en caso de aprovechar la integración de la información con proveedores y socios, el BI ofrece niveles de análisis sobre cuestiones como nuevas oportunidades de inversión, o nuevas ocasiones para la colaboración con terceros.

Bases de datos OLTP y OLAP

OLTP – On-Line Transactional Processing
Los sistemas OLTP son bases de datos orientadas al procesamiento de transacciones. Una transacción genera un proceso atómico (que debe ser validado con un commit, o invalidado con un rollback), y que puede involucrar operaciones de inserción, modificación y borrado de datos. El proceso transaccional es típico de las bases de datos operacionales.

  • El acceso a los datos está optimizado para tareas frecuentes de lectura y escritura. (Por ejemplo, la enorme cantidad de transacciones que tienen que soportar las BD de bancos o hipermercados diariamente).
  • Los datos se estructuran según el nivel aplicación (programa de gestión a medida, ERP o CRM implantado, sistema de información departamental…).
  • Los formatos de los datos no son necesariamente uniformes en los diferentes departamentos (es común la falta de compatibilidad y la existencia de islas de datos).
  • El historial de datos suele limitarse a los datos actuales o recientes.

OLAP – On-Line Analytical Processing

Los sistemas OLAP son bases de datos orientadas al procesamiento analítico. Este análisis suele implicar, generalmente, la lectura de grandes cantidades de datos para llegar a extraer algún tipo de información útil: tendencias de ventas, patrones de comportamiento de los consumidores, elaboración de informes complejos… etc. Este sistema es típico de los datamarts.

  • El acceso a los datos suele ser de sólo lectura. La acción más común es la consulta, con muy pocas inserciones, actualizaciones o eliminaciones.
  • Los datos se estructuran según las áreas de negocio, y los formatos de los datos están integrados de manera uniforme en toda la organización.
  • El historial de datos es a largo plazo, normalmente de dos a cinco años.
  • Las bases de datos OLAP se suelen alimentar de información procedente de los sistemas operacionales existentes, mediante un proceso de extracción, transformación y carga (ETL).

Persistencia ROLAP, MOLAP, HOLAP

Plataformas de Business Intelligence

A continuación mostramos las principales plataformas de Business Intelligence con las que trabaja nuestra empresa. Si desea un listado más exhaustivo de productos puede consultar aquí.

¿Por qué Business Intelligence?

¿Por qué Business Intelligence?

Ejemplos prácticos de Business Intelligence

A continuación mostramos una serie de ejemplos reales (resumidos) de Business Intelligence:

Empresa conservera

Este caso práctico se refiere a uno de las mayores empresas conserveras de Galicia, con presencia internacional, más de 500 empleados y cerca de 100.000.000 € de facturación.

A pesar de que en el sector conservero es bien conocida la estacionalidad de las ventas (el consumo de atún en conserva se dispara en verano, debido a su participación en las ensaladas) y en diciembre (con motivo de la navidad), esta empresa no había sido capaz de optimizar la cantidad de producto finalizado que debía almacenar en stock para maximizar sus beneficios.

Mediante la implantación de un sistema de soporte a la decisión (DSS), y tras el análisis minucioso de los datos históricos que guardaba la compañía, resultó posible rediseñar todo el proceso logístico y de almacenamiento productivo hasta el punto de incrementar la rentabilidad económica de la misma (independientemente de la producción y la demanda) en un 10%.

Cadena de supermercados

Una conocida cadena de supermercados gallegos ha recurrido a un sistema de Business Intelligence para averiguar cuál era el perfil de sus clientes más rentables e intentar hacer lo posible para fidelizarlos.

Para ello, una de las primeras acciones que llevó a cabo fue la creación de una «tarjeta descuento», que vinculara a los clientes con el club del supermercado. Para poder optar a esta tarjeta, cada cliente debía facilitar sus datos personales básicos (edad, sexo, origen…) y unos datos complementarios de sus preferencias. A cambio recibía descuentos eventuales en sus compras.

Tras haber acumulado una relevante cantidad de datos, llegó el momento de extraer la información requerida mediante un sistema de soporte a la decisión. Entre las rarezas obtenidas en los resultados, cabe destacar que el perfil ideal de cada cliente tenía sustanciales diferencias en función de la ubicación geográfica, a pesar de que el límite del análisis era dentro de la propia Galicia.

Cooperativa lechera

En una cooperativa láctea de origen gallego, cuyos productos se publicitan en TV a nivel nacional, se habían desatado las alarmas debido a las grandes desviaciones económicas existentes, cada año, entre los parámetros estimados en enero y los resultados analizados doce meses más tarde.

Finalmente, para resolver el problema y potenciar al máximo sus sistemas informáticos tradicionales, la cooperativa decidió implantar un cuadro de mando integral (Balanced Scorecard) y realizar un seguimiento minucioso de sus objetivos estratégicos. Tras ocho meses desde la puesta en producción del sistema, consiguieron encontrar el origen de las desviaciones y tomar las acciones oportunas para enderezar la trayectoria operativa de la empresa.

Por otro lado, y como efecto colateral estrechamente relacionado, el sistema ha permitido analizar el impacto en las ventas de cada una de sus campañas publicitarias. Basándose la información contenida en sus propias bases de datos, la cooperativa ha conseguido desde entonces adaptar su publicidad para incrementar en un 8% su cuota de mercado.

Operador de telecomunicaciones

Este ejemplo hace referencia a uno de los mayores operadores de telecomunicación del mundo, con más de 91 millones de clientes en 220 países de los cinco continentes. Esta organización cuenta con 190.000 empleados y ofrece una gama completa de servicios de telecomunicaciones: telefonía local, internacional y móvil; internet y multimedia; transporte de datos; y difusión de TV por cable.

En los últimos años, la empresa ha venido utilizando los sistemas informáticos como un arma estratégica fundamental en la batalla entre operadores de telecomunicaciones. El objetivo de una de sus principales iniciativas ha sido reducir las inconsistencias en los datos y compartir la información de manera más eficaz entre las diferentes áreas de negocio, implementando en toda la organización estándares en el campo del software de gestión.

Peluquería local

Una peluquería de Santiago de Compostela llevaba dos años abierta al público. Durante todo ese tiempo, las dueñas, dos chicas jóvenes y emprendedoras, habían trabajado todos los días de la semana (a excepción, naturalmente, de los domingos) para sacar adelante su negocio.

Al haber estabilizado su cartera de clientes decidieron descansar un día más a la semana. Su primera opción fue cerrar los lunes, como las demás peluquerías de la zona. No obstante, decidieron basar su decisión en la información histórica que habían recogido en su pequeña aplicación de citas.

Los resultados obtenidos fueron contundentes, ya que el lunes resultó ser el cuarto día más rentable de la semana (probablemente como consecuencia del cierre de la competencia). Finalmente el día elegido para descansar fue el martes.

Publicaciones Similares